Part Number Hot Search : 
1N5346B ML13155 MMFTN20 V5805 P2000D MX23L MTC14 30KP120A
Product Description
Full Text Search
 

To Download TS487 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1/31 n operating from vcc=2v to 5.5v n standby mode active low (ts486) or high (TS487) n output power: 102mw @5v, 38mw @3.3v into 16 w with 0.1% thd+n max (1khz) n low current consumption : 2.5ma max n high signal-to-noise ratio: 103db(a) at 5v n high crosstalk immunity: 83db (f=1khz) n psrr: 58 db (f=1khz), inputs grounded n on/off click reduction circuitry n unity-gain stable n short circuit limitation n available in so8, miniso8 & dfn 3x3mm description the ts486/7 is a dual audio power amplifier capa- ble of driving, in single-ended mode, either a 16 or a 32 w stereo headset. capable of descending to low voltages, it delivers up to 90mw per channel (into 16 w loads) of con- tinuous average power with 0.3% thd+n in the audio bandwitdth from a 5v power supply. an externally-controlled standby mode reduces the supply current to 10na (typ.). the unity gain stable ts486/7 can be configured by external gain-setting resistors or used in a fixed gain ver- sion. applications n headphone amplifier n mobile phone, pda, computer motherboard n high end tv, portable audio player order code miniso & dfn only available in tape & reel with t suffix, so is available in tube (d) and in tape & reel (dt) pin connections (top view) part number temperature range: i package gain marking ds q ts486 -40, +85c external ts486i TS487 external TS487i ts486 external k86a ts486-1 tba tba x1/0db k86b ts486-2 tba tba x2/6db k86c ts486-4 tba tba x4/12db k86d TS487 external k87a TS487-1 tba tba x1/0db k87b TS487-2 tba tba x2/6db k87c TS487-4 tba tba x4/12db k87d TS487idt: so8, TS487ist, TS487-1ist, TS487-2ist, TS487-4ist: miniso8 ts486-iqt, ts486-1iqt, ts486-2iqt, ts486-4iqt: dfn8 1 2 3 4 5 8 7 6 bypass gnd shutdown vcc out (2) out (1) v in (2) v in (1) 1 2 3 4 5 8 7 6 bypass gnd shutdown vcc out (2) out (1) v in (2) v in (1) 1 2 3 4 5 8 7 6 bypass gnd shutdown vcc out (2) out (1) v in (2) v in (1) 1 2 3 4 5 8 7 6 bypass gnd shutdown vcc out (2) out (1) v in (2) v in (1) TS487-iqt, TS487-1iqt, TS487-2iqt, TS487-4iqt: dfn8 ts486idt: so8, ts486ist, ts486-1ist, ts486-2ist, ts486-4ist: miniso8 out (1) 4 3 2 1 bypass gnd vcc out (2) vin (2) shutdown vin (1) 5 6 7 8 out (1) 4 3 2 1 bypass gnd vcc out (2) vin (2) shutdown vin (1) 5 6 7 8 out (1) 4 3 2 1 bypass gnd vcc out (2) vin (2) shutdown vin (1) 5 6 7 8 out (1) 4 3 2 1 bypass gnd vcc out (2) vin (2) shutdown vin (1) 5 6 7 8 out (1) 4 3 2 1 bypass gnd vcc out (2) vin (2) shutdown vin (1) 5 6 7 8 ts486 TS487 100mw stereo headphone amplifier with standby mode june 2003
ts486-TS487 2/31 absolute maximum ratings operating conditions symbol parameter value unit v cc supply voltage 1) 6v v i input voltage -0.3v to v cc + 0.3v v t stg storage temperature -65 to +150 c t j maximum junction temperature 150 c r thja thermal resistance junction to ambient so8 miniso8 dfn8 175 215 70 c/w pd power dissipation 2) so8 miniso8 dfn8 0.71 0.58 1.79 w esd human body model (pin to pin): ts486, TS487 3) 1.5 kv esd machine model - 220pf - 240pf (pin to pin) 100 v latch-up latch-up immunity (all pins) 200 ma lead temperature (soldering, 10sec) 250 c output short-circuit to vcc or gnd continous 4) 1. all voltage values are measured with respect to the ground pin. 2. pd has been calculated with tamb = 25c, tjunction = 150c. 3. TS487 stands 1.5kv on all pins except standby pin which stands 1kv. 4. attention must be paid to continous power dissipation (v dd x 300ma). exposure of the ic to a short circuit for an extended time period is dramatically reducing product life expectancy. symbol parameter value unit v cc supply voltage 2 to 5.5 v r l load resistor 3 16 w t oper operating free air temperature range -40 to + 85 c c l load capacitor r l = 16 to 100 w r l > 100 w 400 100 pf v stb standby voltage input ts486 active / TS487 in standby ts486 in standby / TS487 active 1.5 v stb v cc gnd v stb 0.4 1) v r thja thermal resistance junction to ambient so8 miniso8 dfn8 2) 150 190 41 c/w 1. the minimum current consumption ( i standby ) is guaranteed at gnd (ts486) or v cc (TS487) for the whole temperature range. 2. when mounted on a 4-layer pcb.
ts486-TS487 3/31 fixed gain version specific electrical characteristics v cc from +5v to +2v , gnd = 0v , t amb = 25c (unless otherwise specified) application components information typical application schematics symbol parameter min. typ. max. unit r in 1,2 input resistance 1) 1. see figure 30 to establish the value of cin vs. -3db cut off frequency. 20 k w g gain value for gain ts486/TS487-1 gain value for gain ts486/TS487-2 gain value for gain ts486/TS487-4 0db 6db 12db db components functional description r in1,2 inverting input resistor which sets the closed loop gain in conjunction with r feed . this resistor also forms a high pass filter with c in (fc = 1 / (2 x pi x r in x c in )) . not needed in fixed gain versions. c in1,2 input coupling capacitor which blocks the dc voltage at the amplifiers input terminal. r feed1,2 feedback resistor which sets the closed loop gain in conjunction with r in . a v = closed loop gain= -r feed /r in . not needed in fixed gain versions. c s supply bypass capacitor which provides power supply filtering. c b bypass capacitor which provides half supply filtering. c out1,2 output coupling capacitor which blocks the dc voltage at the load input terminal. this capacitor also forms a high pass filter with rl (fc = 1 / (2 x pi x r l x c out )).
ts486-TS487 4/31 electrical characteristics v cc = +5v , gnd = 0v , t amb = 25c (unless otherwise specified) symbol parameter min. typ. max. unit i cc supply current no input signal, no load 1.8 2.5 ma i standby standby current no input signal, v standby =gnd for ts486, r l =32 w no input signal, v standby =vcc for TS487, r l =32 w 10 1000 na v io input offset voltage (v icm = v cc /2) 1mv i ib input bias current (v icm = v cc /2) 1) 1. only for external gain version. 90 200 na p o output power thd+n = 0.1% max, f = 1khz, r l = 32 w thd+n = 1% max, f = 1khz, r l = 32 w thd+n = 0.1% max, f = 1khz, r l = 16 w thd+n = 1% max, f = 1khz, r l = 16 w 60 95 64 65 102 108 mw thd + n total harmonic distortion + noise (a v =-1) r l = 32 w, p out = 60mw, 20hz f 20khz r l = 16 w, p out = 90mw, 20hz f 20khz 0.3 0.3 % psrr power supply rejection ratio, inputs grounded 2) (a v =-1), rl>=16 w , c b =1 m f, f = 1khz , vripple = 200mvpp 2. guaranteed by design and evaluation. 53 58 db i o max output current thd +n 1%, r l = 16 w connected between out and v cc /2 106 115 ma v o output swing v ol : r l = 32 w v oh : r l = 32 w v ol : r l = 16 w v oh : r l = 16 w 4.45 4.2 0.45 4.52 0.6 4.35 0.5 0.7 v snr signal-to-noise ratio (a weighted, a v =-1) 2) (r l = 32 w, thd +n < 0.4%, 20hz f 20khz) 80 103 db crosstalk channel separation, r l = 32 w, a v =-1 f = 1khz f = 20hz to 20khz channel separation, r l = 16 w, a v =-1 f = 1khz f = 20hz to 20khz 83 79 80 72 db c i input capacitance 1 pf gbp gain bandwidth product (r l = 32 w) 1.1 mhz sr slew rate, unity gain inverting (r l = 16 w) 0.4 v/s
ts486-TS487 5/31 electrical characteristics v cc = +3.3v , gnd = 0v , t amb = 25c (unless otherwise specified) 1) 1. all electrical values are guaranted with correlation measurements at 2v and 5v. symbol parameter min. typ. max. unit i cc supply current no input signal, no load 1.8 2.5 ma i standby standby current no input signal, v standby =gnd for ts486, r l =32 w no input signal, v standby =vcc for TS487, r l =32 w 10 1000 na v io input offset voltage (v icm = v cc /2) 1mv i ib input bias current (v icm = v cc /2) 2) 2. only for external gain version. 90 200 na p o output power thd+n = 0.1% max, f = 1khz, r l = 32 w thd+n = 1% max, f = 1khz, r l = 32 w thd+n = 0.1% max, f = 1khz, r l = 16 w thd+n = 1% max, f = 1khz, r l = 16 w 23 36 26 28 38 42 mw thd + n total harmonic distortion + noise (a v =-1) r l = 32 w, p out = 16mw, 20hz f 20khz r l = 16 w, p out = 35mw, 20hz f 20khz 0.3 0.3 % psrr power supply rejection ratio, inputs grounded 3) (a v =-1), rl>=16 w , c b =1 m f, f = 1khz , vripple = 200mvpp 3. guaranteed by design and evaluation. 53 58 db i o max output current thd +n 1%, r l = 16 w connected between out and v cc /2 64 75 ma v o output swing v ol : r l = 32 w v oh : r l = 32 w v ol : r l = 16 w v oh : r l = 16 w 2.85 2.68 0.3 3 0.45 2.85 0.38 0.52 v snr signal-to-noise ratio (a weighted, a v =-1) 3) (r l = 32 w, thd +n < 0.4%, 20hz f 20khz) 80 98 db crosstalk channel separation, r l = 32 w, a v =-1 f = 1khz f = 20hz to 20khz channel separation, r l = 16 w, a v =-1 f = 1khz f = 20hz to 20khz 80 76 77 69 db c i input capacitance 1 pf gbp gain bandwidth product (r l = 32 w) 1.1 mhz sr slew rate, unity gain inverting (r l = 16 w) 0.4 v/s
ts486-TS487 6/31 electrical characteristics v cc = +2.5v , gnd = 0v , t amb = 25c (unless otherwise specified) 1) 1. all electrical values are guaranted with correlation measurements at 2v and 5v. symbol parameter min. typ. max. unit i cc supply current no input signal, no load 1.7 2.5 ma i standby standby current no input signal, v standby =gnd for ts486, r l =32 w no input signal, v standby =vcc for TS487, r l =32 w 10 1000 na v io input offset voltage (v icm = v cc /2) 1mv i ib input bias current (v icm = v cc /2) 2) 2. only for external gain version. 90 200 na p o output power thd+n = 0.1% max, f = 1khz, r l = 32 w thd+n = 1% max, f = 1khz, r l = 32 w thd+n = 0.1% max, f = 1khz, r l = 16 w thd+n = 1% max, f = 1khz, r l = 16 w 12.5 17.5 13 14 21 22 mw thd + n total harmonic distortion + noise (a v =-1) r l = 32 w, p out = 10mw, 20hz f 20khz r l = 16 w, p out = 16mw, 20hz f 20khz 0.3 0.3 % psrr power supply rejection ratio, inputs grounded 3) (a v =-1), rl>=16 w , c b =1 m f, f = 1khz , vripple = 200mvpp 3. guaranteed by design and evaluation. 53 58 db i o max output current thd +n 1%, r l = 16 w connected between out and v cc /2 45 56 ma v o output swing v ol : r l = 32 w v oh : r l = 32 w v ol : r l = 16 w v oh : r l = 16 w 2.14 1.97 0.25 2.25 0.35 2.15 0.32 0.45 v snr signal-to-noise ratio (a weighted, a v =-1) 3) (r l = 32 w, thd +n < 0.4%, 20hz f 20khz) 80 95 db crosstalk channel separation, r l = 32 w, a v =-1 f = 1khz f = 20hz to 20khz channel separation, r l = 16 w, a v =-1 f = 1khz f = 20hz to 20khz 80 76 77 69 db c i input capacitance 1 pf gbp gain bandwidth product (r l = 32 w) 1.1 mhz sr slew rate, unity gain inverting (r l = 16 w) 0.4 v/s
ts486-TS487 7/31 electrical characteristics v cc = +2v , gnd = 0v , t amb = 25c (unless otherwise specified) symbol parameter min. typ. max. unit i cc supply current no input signal, no load 1.7 2.5 ma i standby standby current no input signal, v standby =gnd for ts486, r l =32 w no input signal, v standby =vcc for TS487, r l =32 w 10 1000 na v io input offset voltage (v icm = v cc /2) 1mv i ib input bias current (v icm = v cc /2) 1) 1. only for external gain version. 90 200 na p o output power thd+n = 0.1% max, f = 1khz, r l = 32 w thd+n = 1% max, f = 1khz, r l = 32 w thd+n = 0.3% max, f = 1khz, r l = 16 w thd+n = 1% max, f = 1khz, r l = 16 w 7 9.5 8 9 12 13 mw thd + n total harmonic distortion + noise (a v =-1) r l = 32 w, p out = 6.5mw, 20hz f 20khz r l = 16 w, p out = 8mw, 20hz f 20khz 0.3 0.3 % psrr power supply rejection ratio, inputs grounded 2) (a v =-1), rl>=16 w , c b =1 m f, f = 1khz , vripple = 200mvpp 2. guaranteed by design and evaluation. 52 57 db i o max output current thd +n 1%, r l = 16 w connected between out and v cc /2 33 41 ma v o output swing v ol : r l = 32 w v oh : r l = 32 w v ol : r l = 16 w v oh : r l = 16 w 1.67 1.53 0.24 1.73 0.33 1.63 0.29 0.41 v snr signal-to-noise ratio (a weighted, a v =-1) 2) (r l = 32 w, thd +n < 0.4%, 20hz f 20khz) 80 93 db crosstalk channel separation, r l = 32 w, a v =-1 f = 1khz f = 20hz to 20khz channel separation, r l = 16 w, a v =-1 f = 1khz f = 20hz to 20khz 80 76 77 69 db c i input capacitance 1 pf gbp gain bandwidth product (r l = 32 w) 1.1 mhz sr slew rate, unity gain inverting (r l = 16 w) 0.4 v/s
ts486-TS487 8/31 index of graphs description figure page common curves open loop gain and phase vs frequency 1 to 10 9 to 10 current consumption vs power supply voltage 11 10 current consumption vs standby voltage 12 to 17 10 to 11 output power vs power supply voltage 18 to19 11 to 12 output power vs load resistor 20 to 23 12 power dissipation vs output power 24 to 27 12 to 13 power derating vs ambiant temperature 28 13 output voltage swing vs supply voltage 29 13 low frequency cut off vs input capacitor for fixed gain versions 30 13 curves with 0db gain setting (av=-1) thd + n vs output power 31 to 39 14 to 15 thd + n vs frequency 40 to 42 15 crosstalk vs frequency 43 to 48 16 signal to noise ratio vs power supply voltage 49 to 50 17 psrr vs frequency 51 to 56 17 to 18 curves with 6db gain setting (av=-2) thd + n vs output power 57 to 65 19 to 20 thd + n vs frequency 66 to 68 20 crosstalk vs frequency 69 to 72 21 signal to noise ratio vs power supply voltage 73 to 74 21 psrr vs frequency 75 to 79 22 curves with 12db gain setting (av=-4) thd + n vs output power 80 to 88 22 to 24 thd + n vs frequency 89 to 91 24 crosstalk vs frequency 92 to 95 24 signal to noise ratio vs power supply voltage 96 to 97 25 psrr vs frequency 98 to 102 26
ts486-TS487 9/31 fig. 1: open loop gain and phase vs frequency fig. 3: open loop gain and phase vs frequency fig. 5: open loop gain and phase vs frequency fig. 2: open loop gain and phase vs frequency fig. 4: open loop gain and phase vs frequency fig. 6: open loop gain and phase vs frequency 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 5v zl = 16 w tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 2v zl = 16 w tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 5v zl = 32 w tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 5v zl = 16 w +400pf tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 2v zl = 16 w +400pf tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 5v zl = 32 w +400pf tamb = 25 c gain phase phase (deg)
ts486-TS487 10/31 fig. 7: open loop gain and phase vs frequency fig. 9: open loop gain and phase vs frequency fig. 11: current consumption vs power supply voltage fig. 8: open loop gain and phase vs frequency fig. 10: open loop gain and phase vs frequency fig. 12: current consumption vs standby voltage 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 2v zl = 32 w tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 5v rl = 600 w tamb = 25 c gain phase phase (deg) 012345 0.0 0.5 1.0 1.5 2.0 ta=85 c ta=25 c no load ta=-40 c current consumption (ma) power supply voltage (v) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 2v zl = 32 w +400pf tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 2v rl = 600 w tamb = 25 c gain phase phase (deg) 012345 0.0 0.5 1.0 1.5 2.0 ta=85 c ta=25 c ts486 vcc = 5v no load ta=-40 c current consumption (ma) standby voltage (v)
ts486-TS487 11/31 fig. 13: current consumption vs standby voltage fig. 15: current consumption vs standby voltage fig. 17: current consumption vs standby voltage fig. 14: current consumption vs standby voltage fig. 16: current consumption vs standby voltage fig. 18: output power vs power supply voltage 0123 0.0 0.5 1.0 1.5 2.0 ta=85 c ta=25 c ts486 vcc = 3.3v no load ta=-40 c current consumption (ma) standby voltage (v) 012345 0.0 0.5 1.0 1.5 2.0 2.5 ta=85 c ta=25 c TS487 vcc = 5v no load ta=-40 c current consumption (ma) standby voltage (v) 012 0.0 0.5 1.0 1.5 2.0 ta=85 c ta=25 c TS487 vcc = 2v no load ta=-40 c current consumption (ma) standby voltage (v) 012 0.0 0.5 1.0 1.5 2.0 ta=85 c ta=25 c ts486 vcc = 2v no load ta=-40 c current consumption (ma) standby voltage (v) 0123 0.0 0.5 1.0 1.5 2.0 ta=85 c ta=25 c TS487 vcc = 3.3v no load ta=-40 c current consumption (ma) standby voltage (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0 25 50 75 100 125 150 175 200 thd+n=10% thd+n=0.1% rl = 16 w f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) vcc (v)
ts486-TS487 12/31 fig. 19: output power vs power supply voltage fig. 21: output power vs load resistor fig. 23: output power vs load resistor fig. 20: output power vs load resistor fig. 22: output power vs load resistor fig. 24: power dissipation vs output power 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0 25 50 75 100 thd+n=10% thd+n=0.1% rl = 32 w f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) vcc (v) 8 16243240485664 0 10 20 30 40 50 60 70 thd+n=10% thd+n=0.1% vcc = 3.3v f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) load resistance ( ) 8 16243240485664 0 5 10 15 20 25 thd+n=10% thd+n=0.1% vcc = 2v f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) load resistance ( ) 8 16243240485664 0 20 40 60 80 100 120 140 160 180 200 thd+n=10% thd+n=0.1% vcc = 5v f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) load resistance ( ) 8 16243240485664 0 5 10 15 20 25 30 35 40 45 50 thd+n=10% thd+n=0.1% vcc = 2.5v f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) load resistance ( ) 0 20406080100 0 20 40 60 80 vcc=5v f=1khz thd+n<1% rl=32 w rl=16 w power dissipation (mw) output power (mw)
ts486-TS487 13/31 fig. 25: power dissipation vs output power fig. 27: power dissipation vs output power fig. 29: output voltage swing vs power supply voltage fig. 26: power dissipation vs output power fig. 28: power derating vs ambiant temperature fig. 30: low frequency cut off vs input capacitor for fixed gain versions. 0 10203040 0 10 20 30 40 vcc=3.3v f=1khz thd+n<1% rl=16 w rl=32 w power dissipation (mw) output power (mw) 024681012 0 5 10 15 rl=16 w rl=32 w vcc=2v f=1khz thd+n<1% power dissipation (mw) output power (mw) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 rl=32 w rl=16 w tamb=25 c voh & vol (v) power supply voltage (v) 0 5 10 15 20 0 10 20 vcc=2.5v f=1khz thd+n<1% rl=16 w rl=32 w power dissipation (mw) output power (mw) w w w
ts486-TS487 14/31 fig. 31: thd + n vs output power fig. 33: thd + n vs output power fig. 35: thd + n vs output power fig. 32: thd + n vs output power fig. 34: thd + n vs output power fig. 36: thd + n vs output power 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 20hz av = -1 cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output power (mw) 0.01 0.1 1 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 600 w , f = 20hz av = -1, cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output voltage (vrms) 1 10 100 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 1khz av = -1 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 20hz av = -1 cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 1khz av = -1 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 0.01 0.1 1 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 600 w , f = 1khz av = -1, cb = 1 m f bw < 125khz, tamb = 25 c thd + n (%) output voltage (vrms)
ts486-TS487 15/31 fig. 37: thd + n vs output power fig. 39: thd + n vs output power fig. 41: thd + n vs frequency fig. 38: thd + n vs output power fig. 40: thd + n vs frequency fig. 42: thd + n vs frequency 1 10 100 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 20khz av = -1 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 0.01 0.1 1 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 600 w , f = 20khz av = -1, cb = 1 m f bw < 125khz, tamb = 25 c thd + n (%) output voltage (vrms) 100 1000 10000 0.01 0.1 vcc=2v, po=6mw vcc=5v, po=55mw rl=32 w av=-1 cb = 1 m f bw < 125khz tamb=25 c 20k 20 thd + n (%) frequency (hz) 1 10 100 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 20khz av = -1 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 100 1000 10000 0.01 0.1 vcc=2v, po=7.5mw vcc=5v, po=85mw rl=16 w av=-1 cb = 1 m f bw < 125khz tamb = 25 c 20k 20 thd + n (%) frequency (hz) 100 1000 10000 1e-3 0.01 0.1 vcc=5v, vo=1.3vrms vcc=2v, vo=0.5vrms rl=600 w av=-1 cb = 1 m f bw < 125khz tamb = 25 c 20k 20 thd + n (%) frequency (hz)
ts486-TS487 16/31 fig. 43: crosstalk vs frequency fig. 45: crosstalk vs frequency fig. 47: crosstalk vs frequency fig. 44: crosstalk vs frequency fig. 46: crosstalk vs frequency fig. 48: crosstalk vs frequency 100 1000 10000 0 20 40 60 80 chb to cha cha to chb rl=16 w vcc=5v pout=85mw av=-1 cb = 1 m f bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 100 1000 10000 0 20 40 60 80 chb to cha cha to chb rl=32 w vcc=5v pout=55mw av=-1 cb = 1 m f bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 100 1000 10000 0 20 40 60 80 cb = 4.7 m f cb = 1 m f rl=16 w vcc=5v pout=85mw av=-1 chb to cha bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 100 1000 10000 0 20 40 60 80 chb to cha cha to chb rl=16 w vcc=2v pout=7.5mw av=-1 cb = 1 m f bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 100 1000 10000 0 20 40 60 80 chb to cha cha to chb rl=32 w vcc=2v pout=6mw av=-1 cb = 1 m f bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 100 1000 10000 0 20 40 60 80 cb = 4.7 m f cb = 1 m f rl=32 w vcc=5v pout=55mw av=-1 chb to cha bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz)
ts486-TS487 17/31 fig. 49: signal to noise ratio vs power supply voltage with unweighted filter (20hz to 20khz) fig. 51: psrr vs power supply voltage fig. 53: psrr vs input capacitor fig. 50: signal to noise ratio vs power supply voltage with weighted filter type a fig. 52: psrr vs bypass capacitor fig. 54: psrr vs output capacitor 2.0 2.5 3.0 3.5 4.0 4.5 5.0 90 92 94 96 98 100 102 104 av = -1 cb = 1 m f thd+n < 0.4% tamb = 25 c rl=32 w rl=16 w rl=600 w signal to noise ratio (db) power supply voltage (v) 100 1000 10000 100000 -80 -70 -60 -50 -40 -30 -20 -10 0 vcc = 2v vcc = 5v, 3.3v & 2.5v vripple = 200mvpp av = -1 input = grounded cb = 1 m f rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 100 1000 10000 100000 -70 -60 -50 -40 -30 -20 -10 0 cin = 100nf cin = 1 m f, 220nf vripple = 200mvpp av = -1, vcc = 5v input = grounded cb = 1 m f, rin = 20k w rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 90 92 94 96 98 100 102 104 av = -1 cb = 1 m f thd+n < 0.4% tamb = 25 c rl=32 w rl=16 w rl=600 w signal to noise ratio (db) power supply voltage (v) 100 1000 10000 100000 -80 -70 -60 -50 -40 -30 -20 -10 0 cb = 4.7 m f cb = 2.2 m f cb = 1 m f vripple = 200mvpp av = -1 input = grounded vcc = 5v rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 100 1000 10000 100000 -80 -70 -60 -50 -40 -30 -20 -10 0 cout = 220 m f cout = 470 m f vripple = 200mvpp av = -1, vcc = 5v input = grounded cb = 1 m f, rl = 16 w rl >= 16 w tamb = 25 c psrr (db) frequency (hz)
ts486-TS487 18/31 fig. 55: psrr vs output capacitor fig. 56: psrr vs power supply voltage 100 1000 10000 100000 -80 -70 -60 -50 -40 -30 -20 -10 0 cout = 100 m f cout = 470 m f vripple = 200mvpp av = -1, vcc = 5v input = grounded cb = 1 m f, rl = 32 w rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 100 1000 10000 100000 -80 -70 -60 -50 -40 -30 -20 -10 0 vcc = 2v vcc = 5v, 3.3v & 2.5v vripple = 200mvpp av = -1 input = floating cb = 1 m f rl >= 16 w tamb = 25 c psrr (db) frequency (hz)
ts486-TS487 19/31 fig. 57: thd + n vs output power fig. 59: thd + n vs output power fig. 61: thd + n vs output power fig. 58: thd + n vs output power fig. 60: thd + n vs output power fig. 62: thd + n vs output power 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 20hz av = -2 cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output power (mw) 0.01 0.1 1 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 600 w , f = 20hz av = -2, cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output voltage (vrms) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 1khz av = -2 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 20hz av = -2 cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 1khz av = -2 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 0.01 0.1 1 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 600 w , f = 1khz av = -2, cb = 1 m f bw < 125khz, tamb = 25 c thd + n (%) output voltage (vrms)
ts486-TS487 20/31 fig. 63: thd + n vs output power fig. 65: thd + n vs output power fig. 67: thd + n vs frequency fig. 64: thd + n vs output power fig. 66: thd + n vs frequency fig. 68: thd + n vs frequency 1 10 100 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 20khz av = -2 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 0.01 0.1 1 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 600 w , f = 20khz av = -2, cb = 1 m f bw < 125khz, tamb = 25 c thd + n (%) output voltage (vrms) 100 1000 10000 0.01 0.1 vcc=2v, po=6mw vcc=5v, po=55mw rl=32 w av=-2 cb = 1 m f bw < 125khz tamb=25 c 20k 20 thd + n (%) frequency (hz) 1 10 100 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 20khz av = -2 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 100 1000 10000 0.01 0.1 vcc=2v, po=7.5mw vcc=5v, po=85mw rl=16 w av=-2 cb = 1 m f bw < 125khz tamb = 25 c 20k 20 thd + n (%) frequency (hz) 100 1000 10000 1e-3 0.01 0.1 vcc=5v, vo=1.3vrms vcc=2v, vo=0.5vrms rl=600 w av=-2 cb = 1 m f bw < 125khz tamb = 25 c 20k 20 thd + n (%) frequency (hz)
ts486-TS487 21/31 fig. 69: crosstalk vs frequency fig. 71: crosstalk vs frequency fig. 73: signal to noise ratio vs power supply voltage with unweighted filter (20hz to 20khz) fig. 70: crosstalk vs frequency fig. 72: crosstalk vs frequency fig. 74: signal to noise ratio vs power supply voltage with weighted filter type a 100 1000 10000 0 20 40 60 80 chb to cha cha to chb rl=16 w vcc=5v pout=85mw av=-2 cb = 1 m f bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 100 1000 10000 0 20 40 60 80 chb to cha cha to chb rl=32 w vcc=5v pout=55mw av=-2 cb = 1 m f bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 82 84 86 88 90 92 94 96 98 100 av = -2 cb = 1 m f thd+n < 0.4% tamb = 25 c rl=32 w rl=16 w rl=600 w signal to noise ratio (db) power supply voltage (v) 100 1000 10000 0 20 40 60 80 chb to cha cha to chb rl=16 w vcc=2v pout=7.5mw av=-2 cb = 1 m f bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 100 1000 10000 0 20 40 60 80 chb to cha cha to chb rl=32 w vcc=2v pout=6mw av=-2 cb = 1 m f bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 82 84 86 88 90 92 94 96 98 100 102 104 av = -2 cb = 1 m f thd+n < 0.4% tamb = 25 c rl=32 w rl=16 w rl=600 w signal to noise ratio (db) power supply voltage (v)
ts486-TS487 22/31 fig. 75: psrr vs power supply voltage fig. 77: psrr vs input capacitor fig. 79: psrr vs output capacitor fig. 76: psrr vs bypass capacitor fig. 78: psrr vs output capacitor fig. 80: thd + n vs output power 100 1000 10000 100000 -70 -60 -50 -40 -30 -20 -10 0 vcc = 2v vcc = 5v, 3.3v & 2.5v vripple = 200mvpp av = -2 input = grounded cb = 1 m f rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 100 1000 10000 100000 -70 -60 -50 -40 -30 -20 -10 0 cin = 100nf cin = 1 m f, 220nf vripple = 200mvpp av = -2, vcc = 5v input = grounded cb = 1 m f, rin = 20k w rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 100 1000 10000 100000 -70 -60 -50 -40 -30 -20 -10 0 cout = 100 m f cout = 470 m f vripple = 200mvpp av = -2, vcc = 5v input = grounded cb = 1 m f, rl = 32 w rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 100 1000 10000 100000 -70 -60 -50 -40 -30 -20 -10 0 cb = 4.7 m f cb = 2.2 m f cb = 1 m f vripple = 200mvpp av = -2 input = grounded vcc = 5v rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 100 1000 10000 100000 -70 -60 -50 -40 -30 -20 -10 0 cout = 220 m f cout = 470 m f vripple = 200mvpp av = -2, vcc = 5v input = grounded cb = 1 m f, rl = 16 w rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 20hz av = -4 cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output power (mw)
ts486-TS487 23/31 fig. 81: thd + n vs output power fig. 83: thd + n vs output power fig. 85: thd + n vs output power fig. 82: thd + n vs output power fig. 84: thd + n vs output power fig. 86: thd + n vs output power 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 20hz av = -4 cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 1khz av = -4 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 0.01 0.1 1 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 600 w , f = 1khz av = -4, cb = 1 m f bw < 125khz, tamb = 25 c thd + n (%) output voltage (vrms) 0.01 0.1 1 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 600 w , f = 20hz av = -4, cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output voltage (vrms) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 1khz av = -4 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 20khz av = -4 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw)
ts486-TS487 24/31 fig. 87: thd + n vs output power fig. 89: thd + n vs frequency fig. 91: thd + n vs frequency fig. 88: thd + n vs output power fig. 90: thd + n vs frequency fig. 92: crosstalk vs frequency 1 10 100 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 20khz av = -4 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 100 1000 10000 0.1 vcc=2v, po=7.5mw vcc=5v, po=85mw rl=16 w av=-4 cb = 1 m f bw < 125khz tamb = 25 c 20k 20 thd + n (%) frequency (hz) 100 1000 10000 1e-3 0.01 0.1 vcc=5v, vo=1.3vrms vcc=2v, vo=0.5vrms rl=600 w av=-4 cb = 1 m f bw < 125khz tamb = 25 c 20k 20 thd + n (%) frequency (hz) 0.01 0.1 1 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 600 w , f = 20khz av = -4, cb = 1 m f bw < 125khz, tamb = 25 c thd + n (%) output voltage (vrms) 100 1000 10000 0.01 0.1 vcc=2v, po=6mw vcc=5v, po=55mw rl=32 w av=-4 cb = 1 m f bw < 125khz tamb=25 c 20k 20 thd + n (%) frequency (hz) 100 1000 10000 0 20 40 60 80 chb to cha cha to chb rl=16 w vcc=5v pout=85mw av=-4 cb = 1 m f bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz)
ts486-TS487 25/31 fig. 93: crosstalk vs frequency fig. 95: crosstalk vs frequency fig. 97: signal to noise ratio vs power supply voltage with weighted filter type a fig. 94: crosstalk vs frequency fig. 96: signal to noise ratio vs power supply voltage with unweighted filter (20hz to 20khz) fig. 98: psrr vs power supply voltage 100 1000 10000 0 20 40 60 80 chb to cha cha to chb rl=16 w vcc=2v pout=7.5mw av=-4 cb = 1 m f bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 100 1000 10000 0 20 40 60 80 chb to cha cha to chb rl=32 w vcc=2v pout=6mw av=-4 cb = 1 m f bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 80 82 84 86 88 90 92 94 96 98 100 av = -4 cb = 1 m f thd+n < 0.4% tamb = 25 c rl=32 w rl=16 w rl=600 w signal to noise ratio (db) power supply voltage (v) 100 1000 10000 0 20 40 60 80 chb to cha cha to chb rl=32 w vcc=5v pout=55mw av=-4 cb = 1 m f bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 80 82 84 86 88 90 92 94 96 98 100 av = -4 cb = 1 m f thd+n < 0.4% tamb = 25 c rl=32 w rl=16 w rl=600 w signal to noise ratio (db) power supply voltage (v) 100 1000 10000 100000 -60 -50 -40 -30 -20 -10 0 vcc = 2v vcc = 5v, 3.3v & 2.5v vripple = 200mvpp av = -4 input = grounded cb = 1 m f rl >= 16 w tamb = 25 c psrr (db) frequency (hz)
ts486-TS487 26/31 fig. 99: psrr vs input capacitor fig. 101: psrr vs output capacitor fig. 100: psrr vs bypass capacitor fig. 102: psrr vs output capacitor 100 1000 10000 100000 -60 -50 -40 -30 -20 -10 0 cin = 100nf cin = 1 m f, 220nf vripple = 200mvpp av = -4, vcc = 5v input = grounded cb = 1 m f, rin = 20k w rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 100 1000 10000 100000 -60 -50 -40 -30 -20 -10 0 cout = 220 m f cout = 470 m f vripple = 200mvpp av = -4, vcc = 5v input = grounded cb = 1 m f, rl = 16 w rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 100 1000 10000 100000 -60 -50 -40 -30 -20 -10 0 cb = 4.7 m f cb = 2.2 m f cb = 1 m f vripple = 200mvpp av = -4 input = grounded vcc = 5v rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 100 1000 10000 100000 -60 -50 -40 -30 -20 -10 0 cout = 100 m f cout = 470 m f vripple = 200mvpp av = -4, vcc = 5v input = grounded cb = 1 m f, rl = 32 w rl >= 16 w tamb = 25 c psrr (db) frequency (hz)
ts486-TS487 27/31 application note: ts486/487 general description ts486/487 is a family of dual audio amplifiers able to drive 16 w or 32 w headsets. working in the 2v to 5.5v supply voltage range, they deliver 100mw at 5v and 12mw at 2v in a 16 w load. an internal output current limitation, offers protection against short-circuits at the output over a limited time period. fixed gain versions of the ts486 and TS487 including the feedback resistor and the input resistors are also proposed to reduce the number of external parts. the ts486 and TS487 exhibit a low quiescent current of typically 1.8ma, allowing usage in portable applications. the standby mode is selected using the shutdown input. for ts486 (respectively TS487), the device is in sleep mode when pin 5 is connected at gnd (resp. v cc ). gain setting the gain of each inverter amplifier of the ts486 and TS487 is set by the resistors r in and r feed . gain linear = -(r feed /r in ) gain db = 20 log(r feed /r in ) fixed gain versions ts486-n and TS487-n including r in and r feed are proposed to reduce external parts. low frequency roll-off with input capacitors the low roll-off frequency of the headphone amplifiers depends on the input capacitors c in1 and c in2 and the input resistors r in1 and r in2 . the c in capacitor in series with the input resistor r in of the amplifier is equivalent to a first order high pass filter. assuming that f min is the lowest frequency to be amplified (with a 3db attenuation), the minimum value of c in is: c in > 1 / (2* p *f min *r in ) the following curve gives directly the low frequency roll-off versus the input capacitor c in
ts486-TS487 28/31 and for various values of the input resistor r in . the input resistance of the fixed gain version is typically 20k w . the following curve shows the limits of the roll off frequency depending on the min. and max. values of rin: low frequency roll off with output capacitors the dc voltage on the outputs of the ts486/487 is blocked by the output capacitors c out1 and c out2 . each output capacitor c out in series with the resistance of the load r l is equivalent to a first order high pass filter. assuming that f min is the lowest frequency to be amplified (with a 3db attenuation), the minimum value of c out is: c out > 1 / (2* p *f min *r l ) the following curve gives directly the low roll-off frequency versus the output capacitor c out in f and for the two typical 16 w and 32 w impedances: decoupling capacitor c b the internal bias voltage at vcc/2 is decoupled with the external capacitor c b . the ts486 and TS487 have a specified power supply rejection ratio parameter with c b = 1f. a higher value of c b improves the psrr, for example, a 4.7f improves the psrr by 15db at 200hz (please, refer to fig. 76 "psrr vs bypass capacitor"). pop precautions generally headphones are connected using a connector as a jack. to prevent a pop in the headphones when plugged in the jack, a resistor should be connected in parallel with each headphone output. this allows the capacitors cout to be charged even when no headphone is plugged. a resistor of 1 k w is high enough to be a negligible load, and low enough to charge the capacitors cout in less than one second. 0.01 0.1 1 10 1 10 100 1000 rin = 100k w rin = 20k w and fixed gain versions rin = 10k w rin = 1k w low roll?off frequency (hz) cin (f) w w w 10 100 1000 10000 1 10 100 1000 rl = 16 w rl = 32 w low roll-off frequency (hz) c out ( f)
ts486-TS487 29/31 package mechanical data dim. mm. inch min. typ max. min. typ. max. a 1.35 1.75 0.053 0.069 a1 0.10 0.25 0.04 0.010 a2 1.10 1.65 0.043 0.065 b 0.33 0.51 0.013 0.020 c 0.19 0.25 0.007 0.010 d 4.80 5.00 0.189 0.197 e 3.80 4.00 0.150 0.157 e 1.27 0.050 h 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 l 0.40 1.27 0.016 0.050 k ? (max.) ddd 0.1 0.04 so-8 mechanical data 0016023/c 8
ts486-TS487 30/31 package mechanical data
ts486-TS487 31/31 package mechanical data information furnished is believed to be accurate and reliable. however, stmicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result f rom its use. no license is granted by implication or otherwise under any patent or patent rights of stmicroelectronics. specificati ons mentioned in this publication are subject to change without notice. this publication supersedes and replaces all information previously supplied. stmicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of stmicroelectronics. the st logo is a registered trademark of stmicroelectronics ? 2003 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - brazil - china - finland - france - germany - hong kong - india - italy - japan - malaysia - malta - morocco singapore - spain - sweden - switzerland - united kingdom http://www.st.com


▲Up To Search▲   

 
Price & Availability of TS487

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X